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In the Ball-Zachariasen model of high-energy diffractive scattering, the unitarity condition 
leads to a non-linear integral equation for the elastic amplitude. The equation is solved by 
the Newton-Kantorovich iteration, and also by two other algorithms derived from the im- 
bedding method. The starting point is a function proposed by Ball and Zachariasen, which 
had heretofore led to divergent iterative sequences. The techniques used are of interest 
for the general problem of solving equations of S-matrix theory, and are discussed at some 
length from the viewpoint of operator imbedding. The solution is one of an intlnite family 
of solutions related by scale transformations. All members of the family have the same 
value y0 of the dimensionless parameter y = In(ot/u‘), where ot and oI are total and elastic 
cross-sections. The number y0 has the character of an eigenvalue for the solution family; 
there are no neighboring solutions with neighboring values of y. Thus, one has a “boot- 
strap” determination of the strength of particle production, and the computed value of 
y,, , as well as the differential cross-section (for a particular choice of length scale), are in 
rough agreement with experiments on p - p scattering. 

I. INTRODUCTION 

The Ball-Zachariasen model [l, 21 was intended to be a schematic picture of high- 
energy diffractive scattering, admittedly incorrect in smaller details, but perhaps 
reasonable as a first sketch of an illusive physical process. The primary idea of the 
model, taken from the multiperipheral model [3], is that the n-particle production 
amplitude should be expressed as a product, the factors of the product being expressed 
in terms of the elastic scattering amplitude. The unitarity condition then leads to 
an integral equation for the elastic amplitude. Heretofore, the question of whether 
the equation has a physically acceptable solution has not been settled [4, 5, 61. In 
the present paper, numerical evidence for the existence of a suitable solution is 
reported. 
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Ball and Zachariasen suggested two different approaches to the solution of their 
equation. The first was based on the observation that the Hankel transform of the 
equation has obvious step function solutions in the limit of vanishing y, where the 
dimensionless parameter y, the logarithm of the ratio of total to elastic cross-section, 
measures the strength of particle production. It was proposed to look for solutions 
at small y as perturbations of those obtained from step functions at y = 0. The 
existence of an infinite family of such solutions was proved by the contraction mapping 
principle, in Ref. [4]. Numerical calculations showed, however, that those solutions 
did not resemble experiment. In particular, it proved to be impossible to continue 
to a value of y as large as that measured experimentally. 

The second approach of Ball and Zachariasen was to guess a form for an approxi- 
mate solution [2]. Varying a few parameters in the form chosen, theyobtainedafunction 
f0 which seemed to be very close to a solution, but which proved to be unstable under 
simple iteration [2, 51. A later investigation [5] seemed to show that the sequence 
generated by Newton-Kantorovich iteration [7] (hereafter called Newton iteration) 
also is divergent. The divergence was tentatively explained as being due to proximity 
of a singularity of the Frechet derivative of the non-linear integral operator involved. 
It now appears that the divergence was caused by insufficient accuracy in the numerical 
evaluation of the Frechet derivative. With improved accuracy the sequence converges 
quickly to a solution fwhich is quite close to the starting pointf, . The FrCchet deriv- 
ative is rather close to being singular all along the sequence (according to its con- 
dition number and normalized determinant, it is “badly conditioned”), and that in 
itself implies that small errors in its evaluation will produce large deviations from the 
exact Newton sequence. 

In practical applications of the Newton method, it is not unusual to encounter some 
or all of the following difficulties: (i) the initial guess may be so far from a solution 
that the Newton sequence diverges; (ii) the Frechet derivative may be nearly singular 
or even actually singular at some step of the Newton sequence; (iii) for computational 
convenience it may be desirable or necessary to use a relatively poor approximation 
to the Frechet derivative, and that may put convergence in jeopardy. The issues in- 
volved in these problems are best understood from the viewpoint of operator 
imbedding, in which one attempts to pass from the initial guess to a solution by 
integration of an auxiliary differential equation. With a particular choice of the 
imbedding, integration of the differential equation by the elementary Euler method 
yields the so-called damped Newton method, with damping factor equal to the Euler 
step length. Under reasonable conditions the Euler method is stable for sufficiently 
small step length. Thus, the damped Newton method is effective under quite general 
conditions, while the ordinary undamped method is relatively restricted in scope. 
These useful ideas [8, 9, lo], familiar to some numerical analysts but unfortunately 
not often mentioned in standard discussions of the Newton method [7, 111, are 
reviewed in Section 2, and applied in Section 3. 

Section 3 contains the computational results for solution of the integral equation. 
The undamped Newton sequence with an accurately computed Frechet derivative 
is compared to the damped sequence with the less accurate derivative used in [5].~ 
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The latter sequence converges to the same solution as the former, but much more 
slowly. The discussion of Section 2 explains the slower convergence, as well as an 
observed limitation on the size of the damping factor. A second method of integrating 
the imbedding equation is also applied; namely, the trapezoidal rule. It is found to 
be inferior to the Euler method in this example. 

In Section 4, the dependence of the solution on parameters is examined. The solution 
of Section 3 is found to be a member of an infinite one-parameter family of solutions, 
the parameter being c = y/a, , where u, is the elastic cross-section. Different values 
of c may be interpreted as corresponding to different scales of length. All members 
of the solution family have the same value y,, of the parameter y, and y0 is like an 
eigenvalue for the family. There are no neighboring solutions with neighboring 
values of y. Furthermore, the value computed, y0 = 1.88, is not too far from the 
experimental value for p - p scattering at about 20 GeV, yexp w 1.4. 

Section 5 is devoted to conclusions and remarks about the significance of the results 
for the general problem of bootstrap theories. 

II. SOLUTION OF NONLINEAR EQUATIONS BY THE IMBEDDING METHOD 

Consider the system of n real equations in n real unknowns, 

F(x) = 0, (2.1) 

where F and x denote n-component vectors, and F has continuous partial derivatives. 
The FrCchet derivative F=(x) of the operator F: R* + R* is the linear operator defined 
by the Jacobian matrix: 

F,(x) = [%]a (2.2) 

Given an initial guess x,, for the solution of (2. l), the Newton sequence {x,> is generated 
by successive linearizations of (2.1), 

f’d~&n+~ - ha) = --F(xn), n = 0, l,... (2.3) 

The sequence is well-defined if and only if F,(x,) has an inverse for each n. Conditions 
sufficient for definition of the sequence and convergence to a solution x* of (2.1) 
are well known. Let the vector norm 11 x )/ and the linear operator norm ]I A 11 be defined 
as follows: 

II x II = sup I xi I, z 
I/ A I/ = s;p fi. 

X 

Define S(x, , R) as the ball of radius R centered at x,, ; i.e., the set of all x such that 
11 x - x,, I/ < R. A standard theorem of Kantorovich type is as follows: [7, 111 

581/33/I-4 
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THEOREM 1. Suppose that F(x) is defined and dtfirentiable in S(x, , R), and such 
that FZ(x) satisjes a Lipschitz condition in that region, 

II F&l - Fd ~111 G a II x - Y il. 

Suppose also that the inverse of FZ(xO) exists and that 

Then if 

II Fc&,)-l II < b, It x1 - x0 Ii < c, 

h = abc < &. 

r= 1 - (1 - 2h)l12 c < R 
h \ 3 

(2.5) 

(2.6) 

(2.7) 

the sequence {x,} converges to a solution x* of F(x) = 0, with x* E S(x, , r). Estimates 
on the rate of convergence are available [7, 1 I]. 

In other words, given the stated conditions on FZ with any a, b the sequence con- 
verges to a solution provided the first iterate x1 is sufficiently close to the initial guess 
x0 . If x0 is close to a point of singularity of F,(x) (a point 3i: such that F,(Z)-’ does not 
exist), then the minimum b will be relatively large, and 1) x1 - x0 jl will have to be 
correspondingly small to verify the conditions of the theorem. 

The method of operator imbedding provides an informative alternative view of 
the Newton method. Following Gavurin [12] and others [8,9], one considers the 
operator 

H(x, t) = F(x) - e-tF(xo), (2.8) 

with the real parameter t ranging over the half-line [0, co). The object is to find a 
solution x(t) of the problem 

fmw, t> = 0, 0 < t < co, x(0) = x0. (2-9) 

A solution of (2.9) provides a solution of (2.1) in the sense 

2-1 F(x(t)) = 0. (2.10) 

If a solution x(t) of (2.9) is differentiable, it satisfies the following differential 
equation: 

F,(x) $ + F(x) = 0, 
(2.11) 

x(0) = x0 . 
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Conversely, if (2.11) has a solution x(t) on the entire half-line, then 

& H(x(t), t) = F,(x) g + ctF(xo) 

or 
= -F(x) + f+F(x,) = -H(x(t), t) (2.12) 

H(x(t), t) = Ke-t, (2.13) 

where K is a constant. Since H(x(O), 0) = 0 it follows that K is zero, and consequently 
(2.10) holds when x(t) is any solution of the problem (2.11). If F&x(t)) is non-singular 
at large t, then dx/dt tends to zero by (2.1 l), and the limit x(c0) exists. Then 
F(x( co)) = 0 by (2.10) and the continuity of F. Even if x(t) does not tend to a limit, 
x(t) is still a solution of (2.1) “to arbitrary accuracy” at large t, according to (2.10): 
for any E, (/ F(x(t))(l < E for all t > T(E). 

The connection of the differential equation (2.11) with the Newton method is seen 
by considering the approximate solution of the former by Euler’s method: x(n At) 
is approximated by x, , where the sequence {x,> is generated from x0 through the 
equations 

F%(x,) X”+lA; xn + F(x,) = 0, n = 0, I,... (2.14) 

The Euler sequence coincides with the Newton sequence for step-size At = 1. In 
cases where Newton’s sequence fails to converge to a solution of (2.1), we can still 
hope to use Euler’s method with At < 1, or some other method of approximate 
integration, to find a sequence {x,} following closely a solution curve x(t) of the 
differential equation. The goal might be to follow such a curve until a solution x( 00) 
of (2.1) is approached sufficiently closely, or else just to reach a suitable starting point 
point &, for a Newton iteration. There are well-known sufficient conditions for the 
Euler iterates x, to stay arbitrarily close to the corresponding points x(n At) for suffi- 
ciently small d t. Of course, the choice At = 1 corresponding to the Newton sequence 
has no special significance from the viewpoint of Euler’s method, and divergence of 
the Newton sequence is a signal that some At < 1 is required to stay in sufficient 
proximity of a solution curve. The special importance of the choice At = 1, for those 
cases in which it gives a convergent sequence, is that the convergence is quadratic [9]; 
i.e., when X, is sufficiently close to a solution X* there is a constant K > 0 such that 

I/&+1 - x* /I < K I/ Xn - x* /12- (2.15) 

The iteration defined in (2.14) with fl t < 1 is called a “damped Newton-Kantorovich 
iteration” with damping factor d t. 

What can be said about existence of a suitable solution of (2.11) on the entire half- 
line [0, co) ? If x0 and F(x) satisfy Kantorovich conditions such as those of Theorem 1, 
then analysis of the existence question for the differential equation may be carried 
out in analogy to the analysis of convergence of the Newton sequence. Indeed, several 
authors have proved theorems of Kantorovich type for the differential equation 
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[8, 13, 16, 261 i.e., global existence theorems, but with hypotheses too strong to be of 
value in circumstances where the Newton sequence diverges. Useful global existence 
theorems under conditions weaker than those of Kantorovich appear to be lacking, 
at least for operators F of a type sufficiently general to cover a range of important 
applications; (see, however, Refs. [29, 301 for a quite different approach to the 
solution of (2.1) under very weak conditions on F(x)). Nevertheless, basic theorems 
on local existence and approximation of solutions make clear that it is reasonable 
to attempt a numerical solution of (2.1 l), provided that Fz(x,,) is non-singular. 

In the first place, the implicit function theorem applied to H(x, t) = 0 with initial 
solution (x, t) = (x0, 0) ensures the existence of a locally unique solution x(t) of 
(2.11) on some interval 0 < f < 7i , with F,(x(t)) non-singular on that interval. 
A second application of the implicit function theorem with initial solution (x(T~), TV) 
extends the soution to an interval 71 < t < TV . The process may be continued inde- 
finitely, unless the interval lengths / T,+~ - T, I tend to zero because of x(t) 
approaching an $ = x(f) such that Fz(zG) is singular, or because /I x(t)11 + co as t + i 
[14], [38]. If a singular point is encountered, the curve x(t) does not necessarily 
terminate, but it may branch into two or more curves, or “turn back” after passing 
the point i with infinite derivative dx/dt; (in the latter case, one has two different 
values of x for each t in an interval + - 6 < t < F). Techniques for following solu- 
tions through singularities have been discussed by several authors [15-211, and 
examples in elasticity theory are known in which the desired value of a parameter is 
achieved after passing through several singularities [15]. The method recently proposed 
by Keller seems to be especially promising with respect to generality and practicality 
[17]. In the case of the present paper, the numerical computations indicate that 
x(t) extends to t = co, without passing through a singular point of Fz(x) and with 
11 x(t)/1 being bounded. 

While the implicit function theorem gives a qualitative view of the local behavior 
of solutions of the differential equation, theorems of numerical analysis give infor- 
mation on how to approximate the solutions locally. Before quoting such theorems, 
let us make precise the above remarks on uniqueness by recalling the conditions of 
the implicit function theorem in a form appropriate for the present discussion [22]. 

THEOREM 2. Let H(x, t) be a mapping of Rn x R into Rn, having continuous pth 
derivatives, p 3 1, in a neighborhood LR of a point (x,, , t,,) such that H(x, , to) = 0. 
Suppose that Hz(xO , t,) is non-singular. Then there exists a neighborhood Sz, of t, 
and a function x(t) such that 

(i) H(x(t), t) = 0, t E Q, 
(ii) x(t,) = x0 

(iii) x(t) E CP, lEsz, 
(iv) HJx(t), t) is non-singular 

and P = -H=(x(t), t)-l H,(x(t), t), t E Q,, . 

Furthermore, there is only one,finction x(t) with these properties. 
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With H as defined in (2.8), NE Cl if FS E C, and because of (i) the differential 
equation in (iv) is equivalent to 

2 = -F,(x)-l F(x). (2.16) 

Thus, sufficient conditions for (2.11) to have a unique solution in a neighborhood 
of t = 0 are that F,Jx) be continuous in a neighborhood of x,, , and that F*(x,)-l exist. 

As is well known, Theorems 1 and 2 hold as well in arbitrary Banach 
spaces [7, 11, 221, 

A simple criterion for convergence of Euler’s method is based on Lipschitz con- 
tinuity of the function 

f(x) = -F,-‘(x) F(x). (2.17) 

Suppose that (2.11) has a unique solution x(t) in some interval T = [0, T], and con- 
sider the problem of approximating that solution by Euler’s method [23]. 

THEOREM 3. Iff(x) satisfies Q Lipschitz condition, 

IIfW - f( Y)ll G a II x - Y IL &YE& 

where L is a closed region including the solution x(t) of (2.11) in its interior for t E T, 
then Euler’s method with At = t/n, t E T, converges to the solution; i.e., x, -+ x(t), 
n --+ 03, uniformly in t, ifxO = x(0). 

Other aspects of Euler’s method, including theoretical error estimates, the effects 
of numerical errors, and stability questions, are discussed by Henrici [24] and 
Gear [23]. 

If F,(x) is non-singular and Lipschitz-continuous in a closed region L, then the same 
is true of f(x). Lipschitz continuity of f(x) is the standard sufficient condition [23] 
for existence and uniqueness of a local solution of the initial value problem & = f(x), 
x(0) = x0 . The implicit function theorem applied to (2.8) ensures existence and 
uniqueness of a local solution of R = -F;‘(x) F(x), x(0) = x0, if F=(x) is merely 
continuous near x0 , rather than Lipschitz-continuous. 

Euler’s method is usually not recommended for general utility in solving differential 
equations, because of its relatively poor accuracy. The purposes of the present dis- 
cussion are rather special, however, since the sole concern of the imbedding method 
for solution of (2.1) is to reach the asymptote x( co), rather than to stay close to the 
curve x(t) at all t. With that point in mind, one should judge integration methods with 
respect to efficiency in reaching the asymptote, allowing for the possibility that the 
approximate solution curve might deviate substantially from the exact solution at 
small t. A discussion of integration methods from such an orientation has been given 
by Boggs [8]. Adapting ideas of Dahlquist [25], Boggs emphasizes comparison with 
a linear problem. 
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When x is sufficiently close to a solution X* of (2. I), the differential equation (2.16) 
should behave in much the same way as the linear equation 

9 = -y, y=x-x *. (2.18) 

Specifically, suppose that F3c(~)-1 is bounded in some neighborhood !J of x* , and 
that FJx) is Lipschitz-continuous in Q. Then (2.16) may be written as 

‘2 = -(x - x*> + F,-l(.w(x*) - F(x) + F&)(x - x*)1 
= -(x - x*> + 4(x - x*>, x E J-2, (2.19) 

where 4 may be bounded by a second-order form of the mean-value theorem in 
terms of the Lipschitz coefficient a of F, : 

II 4(x - x*)ll < Ba II m4ll II x - x* II2 

< &7b II x - x* l12. (2.20) 

It now seems a good guess that 4 should be negligible in (2.19) when (1 x - x* 11 
is sufficiently small. Provided an x sufficiently close to x, is available, one should 
then be able to compare numerical integration procedures on the basis of their 
efficiency in dealing with the trivial linear problem (2.18). 

Euler’s method applied to (2.18) gives 

Yn+1 = y, - At yn = (1 - At)“+’ y, ) (2.21) 

so that the Euler iterates converge to the correct answer y( co) = 0 for any dt < 2. 
The so-called backward Euler method for solution of j = f( Y), based on the iteration 

Yn+1 = Yn + dtf(vn+A (2.22) 

gives quite a different result when applied to (2.18); namely, 

y,+1 = y, - dt yn+1 = (1 + dt)-“-l yo . (2.23) 

The backward Euler method gives the correct asymptote of zero for any At > 0. 
A third example is the trapezoidal iteration, 

Yn+1 = Yn + + If(Yn+1) +f(Yn)lr (2.24) 

which in the case of (2.18) yields 

2--dt n 
Yn=[ 2+dt Yo* I (2.25) 

The trapezoidal method also gives the correct asymptote for any dt, converging 
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more quickly than the backward Euler method for dt < 1 + 51ia, and more slowly 
if At > 1 + 5rj2. 

Of the three methods mentioned, the Euler method with fit = 1 (i.e., the undamped 
Newton method) and the trapezoidal method with At = 2 are most efficient in finding 
the asymptote; they find it immediately: y1 = yZ = .** = 0. With the Euler method 
and 1 < dt c 2, the convergence is slower, and for d t > 2 one has the divergent 
behavior illustrated in Figure 1 for d t = 2.1: the iterates jump from one side of the 
exact solution to the other. The backward Euler and trapezoidal methods do not 
show this jumping behavior with d t = 2.1, and of these two the trapezoidal rule gives 
much the faster convergence; see Figures 2 and 3. One may conclude that efficiency 

Ezc. 1. Iterates x,, of Euler’s method applied to i = Xr, h = -0.3, At = 7. 

I I I I 
0 7 .I 4 21 28 

FIG. 2. Iterates xn of backward Euler method, for problem of Fig. 1. 
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0 7 14 21 28 

FIG. 3. Iterates x,, of trapezoidal method, for problem of Fig. 1. 

in finding the asymptote depends rather drastically on the integration method and 
step length. It seems likely that a strong dependence on method and step-length 
will also be found in non-linear problems, but it is difficult to predict what the 
dependence will be in an arbitrary problem, except in the region close to a solution 
where the equation is nearly linear. Boggs [8] has proved a theorem on stability of 
the trapezoidal method in the quasi-linear regime. 

Testing of various methods and step lengths may be rewarding in particular non- 
linear problems of interest. The problem considered in the following section is too 
large for extensive experimentation, but one experiment has been carried out; namely, 
a comparison of the trapezoidal method and the Euler method, the FrCchet derivative 
being computed in the approximation of [5]. The trapezoidal rule was suggested by 
Boggs [8] as a possible competitor to the Euler method. 

The backward Euler method and the trapezoidal method are examples from a 
class of methods that Dahlquist calls A-stable (asymptotically stable). A method 
is called A-stable if it yields a sequence { yn} converging to zero when applied with 
any fixed dt > 0 to any equation of the form 

9 = AY, Reh ~0. (2.26) 

It is not yet clear that A-stable methods have a significant domain of usefulness for 
non-linear imbedding problems, but since in the linear case they have stability proper- 
ties qualitatively different from that of the Euler method, it may be worthwhile to 
consider them. It is known that A-stable methods (at least those of the linear k-step 
type [23, 241) are necessarily “implicit”; that is to say, one must solve a non-linear 
equation to compute yn I-1 from y, , if f( y) is not linear. Although in practice the 
solution of the non-linear equation for Y,~ may take only one or two steps of a simple 
iterative procedure (a “predictor-corrector” algorithm), it may reduce the competitive 
advantage of A-stable methods. 
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As was mentioned in the Introduction, it may happen in practice that the exact 
Fr&chet derivative F&V) in (2.16) is replaced by some approximation pz(x), while an 
accurate representation of F(X) is retained. In contrast to the exact equation (2.16), 
the approximate equation 

A? = -P;‘(x) F(x) (2.27) 

will not behave as the linear problem (2.18) when x is near a solution x.+ . That is 
seen by attempting a decomposition like (2.19): 

‘e = -(x - x,) + ly(x)[F(x*) - F(x) + &(x)(x - x*)]. (2.28) 

Here the quantity in the square brackets has a part which vanishes only linearly with 
x - x* . To see that, add and subtract Fz(x)(x - x*) and apply the mean value 
argument of (2.20). Instead of resembling (2.18) for small x - x* , the equation will 
resemble 

j = -Ay, y =x-x*, (2.29) 

where A = e(x,) F,(x,) is a constant matrix. If A deviates substantially from the 
unit matrix, it may happen that Euler’s method with unit step length will never con- 
verge to x*, no matter how close the starting point x,, is to x* . If the step length 
and I] x0 - x* ]I are sufficiently small, convergence is expected (provided, of course, 
that flz(x*) is not so far from Fz(x,) as to give A an eigenvalue with negative real part). 
These remarks explain the behavior of the Ball-Zachariasen equation when treated 
with the approximation to the Frtchet derivative used in Ref. [5]. Convergence is 
obtained when Eq. (2.27) is integrated by Euler’s method with dt = 0.4, but for 
dt = 0.6, say, the Euler sequence diverges, even when the starting point is as close 
to a solution as the computer word length allows. 

To conclude this brief review, it should be mentioned that other techniques have 
been proposed to find a starting point g,, for Newton’s iteration from an initial guess 
x0 . Still in the spirit of the imbedding approach, Meyer [26] and Kung [27] work 
with a string of Newton sequences, each Newton sequence corresponding to a different 
operator equation, constructed in a simple way from the original equation. On the 
other hand, Moore and Jones [28] give up entirely the idea of continuation from an 
initial guess x0 , and instead describe a procedure to search systematically for suitable 
starting points for Newton’s method. In an interesting and quite different line of 
thought, pioneered by mathematical economists, topological methods are used to 
compute fixed points of merely continuous mappings; see Scarf [29] and Todd [30]. 

III. NUMERICAL SOLUTION OF BALL-ZACHARIASEN EQUATION 

The Ball-Zachariasen model prescribes a factored form for the elastic scattering 
amplitude, 

A@, t) = 8visf(x), x = (-ty2, (3.1) 
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where s is the squared energy in the center-of-mass frame, and t is the squared invariant 
momentum transfer. It is most convenient to work with the Hankel transform of the 
Ball-Zachariasen equation, the latter being given originally as an equation for f(x). 
The Hankel transform off(x) is denoted byf^(b), w h ere b is analogous to the classical 
impact parameter: 

f(b) = 
s 

zI x dx J,,(bx)f(x). (3.2) 
0 

Here Jo is the Bessel function of order 0. The integral equation is written as 

F(f? c) =f- A(!, c) = 0, (3.3) 

where c is a real parameter. Here and on occasion in the following we suppress 
reference to the variable b. As a function of b, A(f, c) has the form 

A(f, c; b) = Ia x dx J,(bx) g(x) ecg(=), 

g(x) = jm b db Jo(bx)f(b)2. 
0 

(3.5) 

By taking the Hankel transform of (3.3) and applying the Hankel inversion theorem 
[3 l] one recovers the original form of the Ball-Zachariasen equation in x-space: 

f(x) = g(x) ecg(=). (3.6) 

The total cross-section ut is given by the optical theorem as 

ut = 8d(O), (3.7) 

while the elastic cross-section u, is 

ue = 8ng(O). (3.8) 

By (3.6), the dimensionless parameter y = cg(0) is 

y = cg(0) = ln(uJu,). (3.9) 

One has the option of regarding either c or y as the one parameter of the equation. 
That is, in place of (3.3) one could write 

‘33, y) = 3 - B(f, Y) = 0, (3.10) 

N3, Y; b> = lrn x dx J,(bx) g(x) e”O(z)lQ(o). (3.11) 
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An adaptation of the argument of Ref. [4], Appendix B, shows that the operator A 
maps a certain Banach space S into itself. The space S is the set of all real functions 
4(b) with continuous second derivatives on [0, co) such that the following quantity, 
the norm on S, is finite: 

II + II = SUP@ + l)“‘“[l WI + I #(b)l + I wm < m, 0 < b < co. (3.12) 

It is reasonable to look for a solution of (3.3) in S, by constructing a numerical model 
of the operator A acting on S. The model to be used is the one employed in Ref. [5]; 
namely, all Hankel transforms are evaluated numerically by an analog of Filon’s 
method for Fourier integrals [32]. Over a small interval [b, , b,], 4(b) is approximated 
by its average value, and the resulting integral is calculated exactly: 

The intent of this method is to handle accurately the rapid oscillations of J,,(bx) at 
large bx. The calculations are done with 50 intervals of b and 100 of x, so that the 
numerical analog of (3.3) amounts to 51 equations in the 51 unknowns f(b$). The 
numerical results conform in several respects to theoretical expectations for the exact 
equation [4, 5,6], so that there is some basis for confidence in the approach. No 
attempt has been made to give a rigorous validation of the discretization, but it seems 
likely to the author that one could be provided. Experimentation with the number of 
mesh points, to be reported presently, suggests that convergence will occur. 

The formal expression for the Fr6chet derivative Ff of F, applied to an arbitrary 
element h of S, is as follows: 

F;(J c) = h - A?(!, c) h 

= h(b) - Jbm x dx J,(bx)[l + cg(x)] ecgtr) 6g(x), (3.14) 

where 

6g(x) = 2 la b db J,(bx) f(b) h(b). (3.15) 
0 

A reversal of integration order gives 

F&f, c) = h(b) - j-W K(b, b’, c;3) h(b’) db’, 
0 

(3.16) 

K(b, b’, c; 3) = 2 irn x dx [l + cg(x)] eCg(Z)Jo(bx) J,(b’x) b’f(b’). (3.17) 

In Ref. [5], Ft was discretized by applying a quadrature rule like (3.13), generalized 
to account for the product of two Bessel functions, to the integral (3.17). Let us 
denote the resulting approximation to the Frkchet derivative by Ffl’. Alternatively, 
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one can simply take the Jacobian of the discretized form of E’(j), to obtain a 
different approximation I$‘. The use of I$’ seemed to offer computational 
advantages, but it turns out that the “small” difference between it and the accurately 
computed Jacobian FT' is crucial in the implementation of Newton’s method. 

The approximate solution proposed by Ball and Zachariasen was given as an 
approximation go(x) to the function g(x) of (3.5); namely, 

go(x) = (1 +yxo2,n 1 - (1 +;;xo2)2 [ 1 
g,(O) = 0.657 GeV-2, xo2 = 2 GeV2, 

II = 4.1, a = 1 GeV-2. 

(3.18) 

The corresponding value of c is 2.91 GeV2, hence y = cg,(O) = 1.91. The function 
j,(b) is obtained from go(x) by (3.5) and the Hankel inversion theorem: 

Sow = [ ~ow’2. (3.19) 

The transform to(b), as computed numerically, is positive (except for very small 
oscillations about zero at large b), and the positive square root in (3.19) is required 
for 4, to solve (3.3) approximately. The functions go(x) and f,(b) are shown as the 
dashed curves in Figures 4 and 5. 

The damped Newton sequence { fn}, beginning with f, , is defined by the following 
equations: 

mz)(~n+l - AZ> = --d t -Ftfn>9 n = 0, 1, 2,... (3.20) g(x) ‘\ 
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FIG. 4. Solid line is the function g(x) corresponding to the solution f(b). Dashed line is the 
initial function g&x) proposed by Ball and Zachariasen, Eq. (3.18). 
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For each n, the discretized version of (3.20) is solved forf,,+l - fn by Gaussian elimi- 
nation. The functions P,#J), g,(x), and residuals F( in ; b) are printed out, along with 
the diagnostics 

r, = sup I Rfn ; @ . 

(3.21) 

(3.22) 

(3.23) 
b 

since j,(O) = sup, 1 &b)j, (See [4], Appendix D) and empirically sup, / jn+#) - 
f&)1 = I fn+I(0) - fn(0)], the quantity E, is to be thought of as roughly equal to 

(3.24) 

The normalized determinant d, is the magnitude of the ordinary determinant of 
F&J divided by the product of the Euclidean row lengths of the matrix. Following 

: ’ ! l I 
0 2 4 6 8 IO I2 14 16 b 

FIG. 5. Solid line is the solution f(b). Dashed line is the starting point of the iteration, 4, as 
given in Eq. (3.19). 

the discussion of Conte [33], one may take the normalized determinant d(A) of a 
matrix A as an heuristic guide to the condition of A. If d(A) < 1, “ill condition” 
is indicated. Alternatively, one may compute the condition number k(A) = 11 A 11 . 
]I A-l I/, in terms of which the error in solution of the equation Ax = y may be 
rigorously bounded [34]. In the present example and others, d(A) has the same quali- 
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tative behavior as l/k(A). Since d(A) is much less costly to compute than k(A), it 
was evaluated for A = Ff( jn) on each iteration, whilst k(A) was computed only once 
near the end of the sequence. The two numbers agree in indicating that Ff(f& either 
in the evaluation F!‘) or the cruder evaluation P!l’ 
with Fy’ one finds ‘d,, m 

I , IS badly conditioned. For instance 
1O-4 and k,, w 120, as compared to d = k = I for a unit 

matrix. Of course, these numbers provide only a crude diagnosis of the condition of 
the matrix. A full diagnosis, which does not seem worthwhile in the present case, can 
in principle be made by examining the Jordan canonical form of the matrix [35]. 

The results obtained using the accurately computed Jacobian Fr’ and dt = 1 
are shown in Table I. The convergence is rapid: a solution to essentially the maximum 

TABLE 1 

Results of Newton Iteration, At = 1 

” %I 

0 2.18. 1OF 

1 1.31 . IO-2 

2 3.91 . 10-S 

3 1.88 * 10-b 

4 3.64 . 10-l” 

5 2.97 . lo-l4 

6 1.20. 10-13 

7 1.43 . 10-13 

8 1.16. lo-l3 

9 4.31 . 10-14 

y* 

3.89 . 10-a 

6.95 * IO-* 

1.31 . IO-5 

5.14. IO-10 

1.24. lo-Id 

1.77. 10-14 

1.77 . 10-11 

1.24 * IO-” 

8.88 10-15 

d,, . lo4 

2.020 

1.985 

2.829 

2.987 

2.98812 

2.98812 

2.98812 

2.98812 

2.98812 

2.98812 

accuracy of the computer (a CDC 7600 carrying 14-15 significant digits) is obtained 
by rr = 5. As is expected, the residuals fluctuate but stay small (m lo-14) for larger n. 
Since the larger components of F(f) = f^ - Q(f) are differences of terms j(b) 
and @( fi b) of order unity, the computer’s representation of F( f ) has few or no signi- 
ficant figures when the residuals are less than lo-l3 - 10-14. Thus, the small incre- 
ments fn+, - fn are merely “noise” for it > 5. Table 2 shows the values of the indi- 
vidual components of F(f) at the best solution f, the values of the corresponding 
components ofi and the ratios F(f)/’ 

Table 3 shows results obtained with a damped Newton sequence and the approxi- 
mate Frechet derivative FYI of Ref. 5. Experimentation showed that the largest dt 
giving convergence is around 0.5, independent of t. The results tabulated are for 
At = 0.4 up to n = 34, and At = 0.5 for n > 34. A solution to the maximum 
machine accuracy is obtained by n = 52, and it agrees perfectly with that achieved 
using Fy’. The accurate FrCchet derivative Fr’ gave much faster convergence, so that 
the somewhat greater expense of computing it was more than compensated. 
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TABLE 2 

Residuals of Solution Obtained by Newton Iteration at n = 5, Fti, b) at Representative Points b 

b FCP; 4 

0 5.3 * 10-15 

1.5 8.9 . lo-‘& 

3.0 -6.2 * lo-l5 

4.5 3.1 . 10-15 

6.0 0 

7.5 1.3 * 10-15 

9.0 4.4 * 10-16 

10.5 4.4 . 10-16 

12.0 3.0 . 10-16 

13.5 2.3 * 10-lB 

15.0 2.3 . 10-lB 

16.5 4.4 ’ 10-16 

18.0 3.9 . 10-16 

19.5 2.3 * lo-l8 

25.0 7.1 . 10-16 

32.5 -1.9. 10-16 

40.0 -4.8 . lo-l6 

4.012 . 10-l 

3.253 . 10-l 

2.101 . 10-l 

1.245 . 10-l 

6.970 . 10-a 

3.730. 10-a 

1.922 * 10-Z 

9.596 . 1O-s 

4.652 . 1O-s 

2.203 . lo-* 

1.021 . 10-a 

4.634 . lo-* 

2.053 . lo-* 

9.263 . 1O-5 

2.631 . 10-O 

3.137.10-B 

-5.760 f 10-T 

1.3 . 10-14 

2.7 * lo-l4 

-2.9 . 10-14 

2.5 . lo-l4 

0 

3.5 . lo-‘* 

2.3 . lo-l4 

4.6 * lo-‘* 

6.4 . lo-l2 

1.0. IO-‘” 

2.2. IO-18 

9.4 . 10-l’ 

1.9 . lo-18 

2.4 . lo-lo 

2.7 . lo-lo 

-6.0 * 1O-9 

8.3 . lo-* 

TABLE 3 

Results of Damped Newton Iteration, dr = 0.4 - 0.5 

0 2.94 . 10-t 

4 5.73 . 10-3 

8 7.59 . 10-4 

12 1.06. lo-* 

16 1.58 1O-5 

20 2.39 . 10-G 

24 3.66 . lo-’ 

28 5.62 . 1O-8 

32 8.66 * 10-B 

36 1.14. 10-g 

40 9.13 . lo-” 

44 7.35 * IO-‘2 

48 8.32 . lo-= 

52 5.01 . 10-13 

1.24 3 1O-3 

1.96 * lo-’ 

2.93 3 10-S 

4.32 * 1O-s 

6.40 * lo-’ 

9.45 * 10-B 

1.39 ’ 10-R 

2.06 . 10-0 

2.60 . lo-lo 

2.00 . 10-11 

1.57 . lo-‘* 

1.38 * lo-l8 

2.84 . 10-l” 

3.138 

3.737 

4.118 

4.182 

4.1914 

4.1928 

4.1930 

4.19305 

4.19306 

4.19306 

4.19306 

4.19306 

4.19306 

4.19306 
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A sequence using Fy’ and At = 1.5 was also generated. As might be expected from 
analysis of the linear problem (2.18), the sequence converged, but much more slowly 
than for At = 1. It seems that the differential equation using 107’ indeed resembles 
(2.18), whereas that using Fy’ resembles (2.29) with A substantially different from the 
unit matrix. 

In view of the large condition number and small normalized determinant of Ff, 
it is important to be sure that the linear equations (3.20) are solved with sufficient 
accuracy. By double-precision calculations in a few representative cases, it was deter- 
mined that the accuracy is sufficient. Single-precision and double-precision results 
agreed to 14 significant figures. This was true both for the solutions fn+, - fn (with 
a fixed single-precision evaluation of Ff( 3,J) and for the condition number k(Fi( fn)). 

For comparison with the damped Newton method, the trapezoidal algorithm 
of Eq. (2.24) was implemented for #’ by a predictor-corrector scheme. Given ya , 
a first approximation yAyl to ye+1 is computed as 

(0) ~n+l = Y, + Atfbd. 

A second approximation is obtained as 

(3.26) 

Y% = Y?a + q MY,) + f(y%>l, (3.27) 

and finally ynfl is taken to be 

Ync1 = Yn + + MYn> +f(Y%N. (3.28) 

A calculation of ynfl from yn requires solution of three sets of linear equations, as 
compared to one set in the corresponding step of the damped Newton method. Also, 
this predictor-corrector implementation of the trapezoidal rule in itself reduces the 
theoretical region of stability of the trapezoidal rule for the linear problem, although 
leaving it still somewhat larger than that of the Euler rule. The computation in the 
present non-linear problem revealed that the maximum possible step-length is again 
around 0.5. With At = 0.4, the trapezoidal iterates agree closely with the damped 
Newton iterates for n 3 25. Roughly three times as much computing time was 
required as for the damped Newton method. By contrast, in a much simpler problem 
studied by Boggs [8] the trapezoidal rule seemed to be superior, at least for a particular 
procedure of choosing At in the damped Newton solution. 

The dependence of results on the number of mesh points in the discretization of 
the integral equation was investigated for the case of Ff2’ with At = 1. Solutions were 
generated by a 5 step Newton iteration for increasing values of p, where p denotes 
the number of b intervals (set equal to the number of x intervals in this experiment) 
in the discretization based on (3.13). With p = 25, the results do not resemble those 
presented above. For p = 50, 75, 100, and 125, the results are qualitatively similar 
to those described above, and at each increment of 25 in p there is less change in the 
solution, at all values of b, than at the previous increment of 25. This is shown in 
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Table 4 for representative values of b. The solutions as a function of p, and the relative 
increments Af/f for changes in p, are tabulated. As might be expected of the relatively 
crude quadrature rule (3.13), the convergence is not very fast, and it becomes too 
expensive to produce better evidence of convergence. Nevertheless, convergence is 
certainly suggested by the data, and the changes beyond p = 50 are not significant in the 
physical interpretation of the Ball-Zachariasen model. 

The values of y for the solution of Table 1 is 1.88, as compared to the value 1.91 
at the starting point f. . The experimental value for p - p scattering at 19.6 GeV, 
as quoted in [2], is yexp = 1.41. Since the model is meant to be only schematic, the 
agreement with experiment is quite satisfactory. 

IV. DEPENDENCE OF SOLUTION ON PARAMETERS 

If there is a solution of (3.3) for one value c0 of the parameter c, there are infinitely 
many other solutions for different values of c. This is seen by making changes of 
variable, b + hb and x ---f x/X in (3.3)-(3.5). If f(b) is a solution for c = c, , then 
/z(b) = f(Ab) is a solution for c = X2c, , where 0 < h < co. Let f (b; c,,) be a solution 
for c = c,, # 0; to be specific, the solution found numerically in the previous section, 
with c,, = 2.91 GeV2. The solutions generated from f (b, cJ by scaling will be denoted 
as 

f (b, h2co) = f(Ab, c,J, 0 < A < co. (4.1) 

The set of all f (b, c) so defined will be called the “scaling manifold” M of f(b, co): 

M = {j(b, c) =~(((c/c~)~/~ b, co) I 0 < c < 03). (4.2) 

It is instructive to apply the implicit function theorem to Eq. (3.3), viewed as an 
equation on the Banach space S, to investigate. the defiendence of solutions on the 
parameter c. Let f(b, cJ be one of the solutions in M. According to the implicit 
function theorem, there is a neighborhood a, of c1 and exactly one manifold of 
solutions $(b, c), c E rc2, , continuous with respect to c and such that c#(b, cl) = f(b, cl) 
provided that Fi( f (*, c ) 1 , c, is non-singular (i.e., that it has a continuous inverse). ) 
Now Wf (.t ) ) c , c is non-singular pver the entire manifold M, if it is non-singular 
at c = c0 , as will be demonstrated presently. Since there is numerical evidence that 
Fi(f(., co), co) is indeed non-singular, one may then assert that the hypotheses of 
the implicit function theorem are true for any f (b, cl) E M. The unique manifold 
of solutions c$(b, c) for c E Q, , guaranteed to exist by the implicit function theorem, 
coincides with f (b, c) in s2, . That follows from the definition k4.1) of f(b, c), since 
f (hb, cO) is continuously differentiable with respecf to h, if, as is assumed, f (b, co) E S. 
Hence, f (b, c) is continuously differentiable (therefore, continuous) with respect to c. 
In summary, the scaling manifold it4 is a locally unique manifold of solutions with 
continuous dependence on c. There can be no continuous bifurcation from M to 
another manifold of solutions. That is not to say that other, manifolds, not con- 
tinuously connected to M, may not exist. 
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To show that Ft’i( f (*, ) c , c is non-singular on all of M when it is non-singular at ) 
one element of il4, it suffices just to assume the contrary, and then change integration 
variables. Suppose that there exists a non-zero h ES such that 

Ff(f(., c), c) h = 0. (4.3) 

By using (4.1) with (3.16) and (3.17), and making obvious changes of scale in the 
various integration variables, one easily finds that 

where k is an element of S defined by 

k(b) = h((c,,/c)‘~” b). (4.5) 

Since Ff(p(*, co), co) was assumed to be non-singular, (4.4) and (4.3) are impossible. 
The c dependence off@, c), although given simply by (4.2), may also be computed 

from the differential’equation 

For a check of the numerical model, an integration of (4.6) was carried out over the 
interval 1.13 < c < 2.91. The resulting function f(*, c) agreed accurately with the 
theoretical result (4.2). 

As was noted in Section 3, either o .or 9 = eg(0) may be regarded as thee-one para- 
meter appearing in the Ball-Zachariasen equation. With y as parameter, the equation 
to be considered is (3.10), and one would like to know how a solution of (3.10) 
depends on y. As will be shown, y has a constant value y,, R=! 1.88 on the scaling mani- 
fold M, and Eq. (3.10) does riot determinepas a c&inuOus function oyy in a neighbor- 
hood of M. Thus, ‘yO has the character of an eigenvalue associated with the manifold 
M; there are no neighboring solutions with neighboring values of y. The possibility 
of additional scaling manifolds Ml , M, ,... is not excluded. If the Frechet derivative 
cf is non-singular on Mi , then the corresponding. y, , constant on Mi , again has the 
character of an eigenvalue. 

The constancy of y(c) = cg(0; c) on M is seen immediately from the definitions 
(4.2) and (3.5). Since Jo(O) = 1, 

y(c) = c j-m b dbf(b, c)” = c lrn b db&/c,)1/2 b, cJ2 
0 0 

= co lam b db.f(b, qJ2 = y(co) F. yo, 0 < c < co. (4.7) 

Now suppose that (3,lO) has a solution fbb, r) E S, defined for y near y. , continuous 
in y at y. , and such that f(b, yo) ,= f (b, c& where $(b, C~,E M. This assumption 
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leads immediately to a contradiction of previous conclusions, since the continuity 
of J in y implies that the ratio 

(4.8) 

changes by an amount 6c when y changes from y. to y,, + 8y, where 6c --+ 0 when 
8~ -+ 0. Consequently, j(b, y0 + 6~) is a solution of (3.3) with c = c, + 6c and 
y = y,, + 67, which tends to f(b, cl) when 6y and 6c go to zero. That is impossible, 
by the local uniqueness of the solution manifold M: for sufficiently small 
67, J(b, y0 + 6~) must belong to M (it must equal p(b, cr + 6c)), which implies by 
(4.7) that it has y = y,, , rather than y = y0 + 6~. 

If ‘Xk 4, YO) were non-singular, where G is the operator appearing in (3.10), 
then (3.10) would determine p as a function of y, continuous at y0 . It then follows 
from the above results that Gf( p (e, c), y,,) is singular. It is in fact possible to display 
an eigenvector of G; with eigenvalue zero; namely, PC = 8f(b, c)/ac is such an eigen- 
vector. Let p be an element of M, and h be an arbitrary element of S. A calculation 
extending that of (3.14)-(3.17) shows that 

The difference between Gpand Ff is an operator of rank one (an operator with separable 
kernel), and (Gt - Ff) h is a vector in the direction of Fe . Also, F, = -Fife , accord- 
ing to (4.6). With h = fc one has 

(4.10) 

The solutions found in Ref. [4] have a continuous dependence on y. Those solutions 
have the form 

A@ = w + Ma1 - wa, (4.11) 

where h(b) = ha(b) is any unit step function with bounded support [for example, 
h(b) = @(r - b)] and H(b) is a smooth function in the Banach space B described in 
Eq. (3.7) of [4]. Since I $@)I is small compared to 1, the solutions (4.11) are dis- 
continuous at the jumps of the step function. The reason for working with 4 is that 



A NONLINEAR INTEGRAL EQUAmON 67 

it obeys a well-behaved integral equation. The FrCchet derivative of the corresponding 
integral operator is compact and non-singular on B. Consequently, #b, c) is con- 
tinuous in c, at fixed h. 

For a fixed step function h(b), a change in c is not equivalent to a scaling trans- 
formation: a small change in c produces a small change in y, and y tends to zero 
when c goes to zero. 

V. CONCLUSIONS 

There is strong numerical evidence that the Ball-Zachariasen equation has a 
solution which yields a differential cross-section in qualitative agreement with data 
on elastic proton-proton scattering. The evidence might be strengthened by veri- 
fication of the Kantorovich condition (2.6) at a point near the solution, and by a 
better justification of the discretization (3.13). The solution is isolated in the space of 
the parameter y = ln(a,/a,), in a sense described precisely in the text, and has a 
value of y not too far from the experimental value for proton-proton scattering. This 
result may be described as a “bootstrap” determination of the coupling strength for 
particle production. As such, it may provide encouragement for the pursuit of more 
realistic models of bootstrap type. It has often been conjectured that homogeneous 
non-linear unitarity equations might have non-zero solutions in addition to the 
obvious zero solution, and that determination of certain physical constants might 
be a peculiar feature of such solutions. Analysis of the associated mathematical 
problems is a formidable task, however, so that to date one has no theorem, pro or 
con, on the existence of bootstrap solutions to non-trivial models. Even convincing 
numerical evidence has been lacking, and the present example of a relatively well- 
founded numerical bootstrap solution is probably unique in the literature. Perhaps 
the approach of the present paper, a numerical application of the imbedding method 
with guidance from functional analysis, is the most promising method for further 
studies of the bootstrap question. 

The solutions of Ref. [4] are vaguely analogous to Castillejo-Dalitz-Dyson (CDD) 
solutions of crossing-unitarity equations [36], and should not be thought of as boot- 
strap solutions.‘The function 4 of (4.11) satisfies an inhomogeneous integral equation, 
the inhomogeneity being provided by the input step function h(b). In a Regge theory 
with a CDD solution [37], the partial wave amplitude is analytic in angular momen- 
tum t, except for a point of discontinuity at 8 = 0 (a so-called Kronecker-delta 
singularity). The special status of 8 = 0 leads to an inhomogeneous term in the N/D 
form of crossing-unitarity equations (37). Similarly, the solutions (4.11) are discon- 
tinuous in impact parameter b, which is the same (in a semi-classical view) as being 
discontinuous in 8, and the discontinuity is associated with an inhomogeneous term 
in the integral equation. 

The solutions of [4] might be considered an embarassment to the Ball-Zachariasen 
model, but it is perhaps reasonable to rule them out on the ground that a physical, 
solution should be continuous in the impact parameter. Like CDD solutions, they 
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can involve arbitrarily many parameters, since the input step function may have any 
number of steps at arbitrary positions. Also, they change continuously with y, and 
hence do not give a bootstrap determination of particle production strength. 
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